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Addition of arbitrary number of identical angular momenta 

V V Mikhailov 
Kazan Physical and Technical Institute of the Academy of Sciences of USSR, Kazan 
420029. USSR 
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Abstract. Under the vector addition of angular momenta, each equal to s, the resulting 
angular momentaj occur with some multiplicity. In this paper the general formula for these 
multiplicities is obtained by a simple algebraic method. In the case of s = 1/2 our expression 
proves to be a well known one. Also given are some relations connected with the 
multiplicities. 

1. Introduction 

There has been appreciable success in the theory of cooperative effects of many atoms 
interacting with electromagnetic radiation. Particular attention was drawn to the case 
of two-level atoms. That is quite understandable because of its simplicity, completeness 
of theoretical results and paramount practical importance. Some of the papers in this 
field such as the basic paper of Dicke (1954), the first paper on atomic coherent states 
(Arecchi et a1 1972) and the first paper on a theoretical investigation of super-radiant 
phase transition in the Dicke model (Hepp and Lieb 1973) essentially use the formula 

n !(2j + 1) 
Pin = (fn - j ) ! ( in  + j +  l)! 

which gives us the expression for multiplicity Pin of angular momentum j occurring in 
quantum mechanical vector addition of n identical spins, each having s = 1/2. Formula 
(1) was also derived by Kotani et af (1955) in the genealogical construction for 
electronic spin states. In this construction f in are the numbers of spin functions 
encountered in the so called Yamanuchi-Kotani branching diagram (Salmon 1974). 

Long before these works (1) was known in symmetric group theory as a particular 
case of the Frobenius formula (Hamermesh 1962) for the dimensions of the irreducible 
representations, corresponding to the frame { h l , h 2 } .  But it is well known that the 
dimension of symmetric group representation, corresponding to the Young tableaux 
with three and more rows, is not equal to the multiplicity pi, of angular momentum j 
occurring in vector addition of n identical spins, each having the angular momentum 
s a l .  

The purpose of this paper is to find the formula (10) generalizing (1) to the case of 
addition of n identical angular momenta each of which is equal to s. The explicit form of 
the new formula turned out to be much more complicated than that of (1) and it is equal 
to the sum of k = [(sn - j)/(2s + l)] terms. It will be shown that if we replace s in (10) by 
1/2 we get (1) exactly. After that we will give the proof of this formula in an arbitrary 
case and some useful relations connected with it. 
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2. General expressions for the multiplicities 

If we have particles, one in the state with angular momentum j l  and the other with 
angular momentum j 2 ,  the angular momentum of the two-particle system j will satisfy 
the well known restriction 

i1+i2aiaIi1--i2l. (2) 

In the present paper we will dicuss only the case of identical angular momenta (or spins) 
i.e. j 1  = j 2  = . . . =in = s, and we will denote by j the total angular momentum of the 
system. Then (2) can be rewritten 

. . .  

2 s a j a O .  (3) 

Let us consider a three-particle system. After two-step addition of three angular 
momenta we obtain the following conditions: 

j=3s ,  3s- 1 , .  . . s, 

3s - 1 , 3 ~ - 2 , .  . . s - 1, (4) 
. . . .  

We can see that some values of j occur in (4) several times, otherwise multiplicities of 
such values are more than one. In general, after the addition of n spins, each having the 
angular momentum s, definite j occur P;,, times (0 or 1/2 G j s s n ) .  We can paraphrase 
this in group theory language: the direct product of n irreducible representations 
Ds of SU(2) decomposes into irreducible ones D', and q,, is the multiplicity of the 
representation D'. 

Since each particle of the system may be in one of 2s + 1 independent states and the 
whole system in one of (2s + 1)" states, equality of state numbers in the system of 
independent angular momenta and in the system of coupling angular momenta may be 
written in the form: 

(2j + I)P;,, = x", 
i 

where j = sn, sn - 1, . . , 0 or 1/2, and ,y = 2s + 1. 
For s = 1/2 the multiplicities c,, are given in (1). There is no such simple formula for 

the case s 3 1.  But as we will see later it is possible to write the numbers c,, in an 
analytical expression and our aim is to find this. 

Tables 1 and 2 of numbers Pjn, which are an equivalent Yamanuchi-Kotani 
branching diagram for s > 1/2, may serve as illustrations of our reasonings. 

Referring to table 1 it can be easily shown that P;,, are governed by such recurrence 
relations as: 

Pi'" = Pi'+l., -1 + Pifn-l.+ P;-l,"-l , j = n , n - 1 ,  . . .  1, 
(6) 

P;" = P;,"-l. 

P;" = P;+$*"-l + P;+$-l," - 1  + . . . + Pt_$  I,"- 1 .  

For arbitrary s the general recurrence relations then take the form 

(7) 
It is not possible to obtain the solution of the most simple relation (6) by a straightfor- 
ward method. In order to find the solution of (6)  we draw attention to the simplicity 
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Table 1. Multiplicities P;". 
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h O 1 2 3 4  5 6 7  8 
_ _ ~ ~  
0 1 0  1 1  3 6 1 5  36 91 
1 1 1 3 6 15 36 91 232 
2 1 2 6 15 40 105 280 
3 1 3 10 29 84 238 
4 1 4 15 49 154 
5 1 5 21 76 
6 1 6 28 
7 1 7  
8 1 

of the numbers filling the first few lower diagonals in table 

n -2 
P' n,n =(  ) = l ,  

1 n - 1  
P , , - ~ , ~ =  ( ) = , - I ,  

n + l  n - 2  

1 n + 2  

n + 3  

~ , , - 4 ~ , , = (  ) - n ( n y l ) ,  

n +4 

1: 

Here (9 are the binomial coefficients. Now we have enough information to understand 
how to write all Pi', in the unique expression 

Here 0 6 k d [ ( n  - j ) / 3 ] .  The square brackets [ b ]  denote the integer part of b. Extend- 
ing the construction in a similar fashion, we achieve the formula for arbitrary s:  

(s + l ) n  - j  -,yk - 2 
k n - 2  

Here and later in all summations over k numbers, k must satisfy two conditions: (i) 
k 3 0 and (ii) the upper numbers in binomial coefficients must be more than or equal to 
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Table 2. Multiplicities P:,!', 

I F 0 1 2 3 4 5  6 7 8 

0 1  1 4 34 364 

1 1 9 90 1000 

2 1 11 120 1400 

3 1 10 120 1505 

4 6 96 1351 

5 3 64 1044 

6 1 35 700 

7 15 406 

8 5 202 

9 1 84 

10 28 

11 7 
12 1 

0 2 20 210 

1 4 34 364 

3 36 426 

2 30 400 

1 20 315 

10 210 

4 119 

1 56 

21 

6 

1 

the lower numbers. If s = 1 / 2  is inserted, (10 )  must be in agreement with ( 1 ) .  In fact, 
from (10)  we have 

In elementary combinatorics (Vilenkin 1969) there are the following relations (written 
here in a convenient form): 

The middle part of (12 )  is almost equal to ( 1  1 ) .  Since Pjn = Qjn - Qj+l,n it follows that 

which was to be proved. 

the simplest expressions for s = 1 and s = 1 which have more than one term 
Further we will write (10) in the cases s = 1, j' = n - 3 and s = $, j' = gn - 4 .  These are 

P;-3,"= n ( n 2 - 7 ) / 6 ,  

PZn-4,,, = n ( n 3 - 2 n 2 - n  - 2 6 ) / 2 4 .  
1 

The algebraic equations n 2  - 7 = 0 and n - 2n2 - n - 26 = 0 have no integer roots. 
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Therefore these multiplicities cannot be written in the expression analogous to ( 1 ) .  
Comparable results give considerations of multiplicities with another s and j .  Conse- 
quently we may say that in general (10) is not reducible to the monomial form akin to 
(1).  

3. Recurrence relations for multiplicities 

We will now give the proofs that the multiplicities (10) satisfy the recurrence relations 
(7) and therefore are the true multiplicities. 

Suppose j 2 s; then from (7)  we obtain 

For the sake of brevity, the index s in R and P is omitted. The substitution of Pi,, from 
(10) into (14) yields 

where m = (s + l ) n  - j ,  1 = s + i. Since the maximum value of k is p = (sn - j  - lo)/x, 
where 0 c lo d 2s, we present a more simple form of (1  5 )  : 

n - 1  m-1-xp -3  
R, = pzl(-l)kF;,, + (- 1)”( “ )  ( n - 3  

-” - ’) - (-l)”( ) ( k = O  p n - 2  l=O P 
where 

m - ~ k - 2 ) -  f ( n i l ) (  m - I - x k - 3  
n - 2  I=O n - 3  F;n= (;)( 

n - 1 m -xk  - 2 )  + ( n  ; 1)  (m - x ( k  + 1)  - 2 
= ( k - l ) (  n - 2  n - 2  

To make the transformation from (17) to (18) we used the following binomial relations: 

Here in case k = m -n the last term is equal to (,TI) and is nothing but zero. It is not 
difficult to show that 

The two last terms of (16) can be simplified with the help of (19), so that R, is given by: 

and since we have the condition p x  = sn - j  - lo and restriction (:I:) = 0, then 

Rjn=(-l)P( n - 1  )( n - 3  )SO. 
p n - 2  
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We have proved that the numbers Pin from (10) satisfy recurrence relations (7) when 
j 3 s .  

When j s s (7) is given by 

The substitution of (10)  into (22)  yields 

n - 1  m + 2 j - l - x k - 2  
R i n = ~ ( - l ) k ( ; ) ( m - x k - 2 ) -  k n - 2  1=0 2 x ( - l ) k (  k )( n - 3  

where 1 = j + i ,  m = ( s  + l ) n  - j .  After the summation over 1 with the help of (19)  the last 
binomial coefficient in the second term of (23)  is 

M + 2 j - x ( k  + l ) -  1 

Substituting this into (23)  we arrive at three sums over k.  The first and the third sums we 
can put together. After that we have 

Ri, is identical with zero when j = s. However we failed to make the general proof of 
(24)  for j < s. We performed the verification of (24)  for some concrete values of s, n and 
j which confirmed the correctness of this equality and therefore of (22) .  

4. Some properties of multiplicities 

Getting the evidence of rightness of the expression (10)  for the multiplicities we can 
derive several formulae from general relation (5 ) .  They may be useful in statistical 
investigation of many-spin systems. 

Substituting (10) into ( 5 )  and changing the sequence of summation over j and k we 
have 

O r k r [ ; ] , j = q , q - l , .  . . , O o r &  q = s n  -xk ,  1 = n -2 .  

For binomial coefficients there are two simple formulae which are subsidiary for us 

f ( n  + i )  = (M + n  + l ) ,  
i = O  n n + l  

f i ( n l i ) = ( n + l ) (  m + n + l  ) 
i=O n + 2  
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They can be easily proved by elementary methods. With the help of (26) and (27) we 
can take the sum (25) over j 

j = 0, 1, . . . , m 

j = ; , $ , .  . . , m. 

1+2q+2 q + l + l  
1+2 ( 1+1 >, 

(28) 
I 

1+2 

Finally we have from (25) 

n-2k n (s+l)n-Xk-l)=x, , - l  9 sn integral 1 k (-l)k-(k)( n n - 1  

(s  + 1)n -xk -3 ) =x", 
k n sn half-integral. 

Using the resembling methods it is possible to take other sums 

sn integral, 
n ( s+l )n-Xk- l  

j-0 f fl?I=c k (- 'lk(k)( 

j = 1 / 2  k n - 1  

n - 1  

sn half-integral. 
( s  + 1)n -xk -3/2 

(32) 

With the help of the last expressions and formula ( 5 )  it is not difEcult to take the sum 
Xi jPf,,. 

In conclusion, it is interesting to note that in our problem there are some sorts of 
numbers which are determined similarly to (10) and which include the multiplicities Pf,, 
as a particular case. We now speak about the differences 

p"' In- - p y  In - py-1 I + l m  p;p = p;,,. 
By means of (19), where we set k = 0, one obtains 

(s + 1)n -xk - j - 3  
n - 3  

P;: = PY,, - Pf+l,,, = ; ( - l ) k (  ;) ( 
After the analogous continuation of calculation we have for arbitrary Y 

(s + l ) n  -xk - j -v -2  
n - v - 2  
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